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1 Overview of Activities

1.1 Design Generators

A ful custom VLSI chip design is typically composed of a few interesting and unique circuits and
numerous commonly-used circuits such as RAMs, ROMs, PLAs, MUXes, decoders and the like.
A central research question facing architects of CAD systems is: How can one easily capture the
expertise that goes into the construction of these commonly-used circuits so that they may be easily
modified and re-used in one chip after another?

Our answer to this question has been to develop a methodology for constructing design generators
- programs that produce entire families of circuit designs. Existing design generator systems are
limited by either a rigid implementation strategy or by the inability to support multiple descriptions
of the circuit. Our strategy has been to develop an open-ended system that does not restrict the
implementation strategy, and supports the capture of several descriptions of a family of circuits -
layout, schematic and simulation model.

1.2 Multilevel Simulation

One of the major problems in the design of electronic circuits is how to simulate such systems at
a variety of levels of abstraction. Ideally the designer would like an environment in which he or
she could specify and simulate an entire architecture at a very high level of abstraction, while some
particular part of the whole is simulated at a lower level, e.g. at the gate, switch or even analog
level. In other words the high level architectural model serves as a context for simulating the detailed
circuit level model.

Our attempt to construct such a multilevel simulator has led to the development of Network C (NC),
a language-based simulation environment. Network C supports discrete event scheduling for system
modeling and a general nonlinear equation solver for analog modeling. We are currently evaluating
several proposals for refinement of both the specification language as well as the run-time support.

1.3 Architectural Experiments

Several ongoing architectural experiments provide testbeds for the generators project as well as
our multilevel simulation work. In 1985 students in an advanced VLSI class designed a 32 bit
microprocessor known as the Quarter Horse, which turned into a case study of choice complexity.
Within the past year, work has progressed on two designs for a chip that generates curves and
surfaces from sets of control points. The two designs explore fundan.entaly contrasting approaches
to the problem - that of a high performance, fixed arrangement of multiple processing elements vs
a single programmable processing element.
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2 Future Plans

In the proposed contract "VLSI Architectures and CAD" we describe two research challenges: Ex-
ploit VLSI in high performance computer architectures and empower VLSI CAD with greater so-
phistication for computer architecture design. Our strategy is to focus on the interface between
computer architecture and VLSI CAD, so that the the qualities of each are present in the results
of the other. From this investigation should come architectures leveraging rather than fighting the
characteristics of VLSI, and VLSI CAD tools supporting rather than impeding architecture design.
Two vehicles have been chosen for this study. On the architecture side we will design an innovative
processor element architecture applicable to the next generations of parallel computers. This PE
design will leverage custom VLSI and exploit the special features of parallel processors to deliver
dramatically better performance. On the VLSI CAD side our intent is to provide powerful and
versatile design tools for complex systems containing some custom chips and a variety of other com-
ponents. We are already examining a multilevel simulation system, functional language specification
of circuits, and a novel fast-search approach to leaf cell design.

3 Current Activities

3.1 Progress In Design Generators

(Larry Snyder, Jean-Loup Baer, Larry McMurchie, Wayne Winder, Rudolf Nottrott)

The generators project has reached a milestone with the completion of programs that generate layout,
schematic diagram and network decriptions (see Appendix A). The input to these programs is 1)
a notation that describes the geometric and network structures of an entire family of circuits and
2) a list of parameters that specify the particular instance circuit desired. We believe the notation
provides a compact hierarchical specification of circuit structure and that it is a convenient means
of capturing circuit expertise for others to utilize.

One of the most interesting aspects of developing this notation has been the analysis of specifications
for circuit geometry and network structure. In particular we have tried to find the elements common
to both representations so that they can be exploited in the notation. Obviously a hierarchy of
design objects is one such common element. Also, we found how useful network information could
be in constructing layouts, as it could provide the specific information about what signals are to be
connected when layout objects are being positioned. By including such information layout generation
could be freed from the requirement of interlocking cells.

We have tested the notation by implementing a number of decoders as well as a Baugh-Wooley
multiplier, and are beginning to apply it to coded circuits such as PLAs and ROMs as well. Further-
more, we are looking at a number of extensions to the notation, including the addition of network
information to the layout assembly.
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3.2 Simulation with NETWORK C

(Bill Beckett)

The Network C (NC) simulation system has been used extensively in the development and refinement
of the APEXII design (Section 3). Initially a very high level model of the APEXII algorithm was
implemented in NC. Because NC is based on C language models, we were able to easily interface a
library of C graphics routines to the chip model and display the curves being "generated" by the
chip model Thus a "proof of principle" experiment could be performed on the algorithm with a
minimum of effort. We then began specifying the architecture of the chip. We did a block-level
specification in which all the, major blocks (RAMs, ROM, processor elements, datapaths etc.) and
their functions were specified. Again we could simulate this block-level specification with the same
graphical interface as before. In the following months we refined the architecture, again simulating
the refinements by performing the curve drawing experiments.

At the sname time as the architecture was being refined, one of us expanded the level of detail of
the original algorithm and looked at the accuracy of the curves as a function of word size, curve
type and degree. Again NC was used as the simulation framework. The results of these experiments
resulted in the determination of a minimum word size to be employed in the processing element.
This result was then implemented in the architectural model.

While these two efforts were proceeding, another member of the design team developed a RAM, the
basic design of which was simulated using the MOS modeling capability of NC.

At this time the architectural model of APEXII has been completed. The problem we are now
concerned with is ensuring the block layouts we have constructed are identical in function to the
corresponding models in the NC simulation. With the smaller blocks we are able to replace the
model with the extracted circuit modeled at the MOS level, while the remainder of the chip is
modeled at the functional level. Several blocks ae simply too large for this scheme. What is needed
is a more approximate switch-level modeling of these larger blocks. The procedure we have adopted
is to interface the switch level simulator RNL to NC through a fork. Again, because NC is based on
C language models, implementing a fork within a model was straightforward. In the near future we
intend to implement a switch level algorithm in NC; while that is in progress the RNL forking scheme
provides both a temporary solution to the problem as well as a prototype of the final implementation
of switch-level simulation in Network C.

The use of both the high level functional capability and the MOS modeling of NC has provided its
developer with considerable feedback. Numerous modifications have been made to accommodate its
use on a chip design the size of APEXII. A new user's guide which reflects much of this feedback
was written and is available. We expect to be able to distribute Network C to the community during
the first half of 1966.
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3.3 APEX: An Architecture For Drawing Parametric Curves and Sur-
faces

(Carl Ebeling, Tony DeRose, Larry McMurchie, Bill Barnard, Bill Yost)

Two chips are currently being designed for the purpose of drawing curves and surfaces from sets
of control points (see Appendix B). APEX I employs multiple processing elements in a triangular
data-flow architecture. APEX II performs the same computation in a more flexible way that allows
the generation of higher degree curves at the cost of lower performance.

In the design of APEXII a detailed architectural model was constructed and simulated with the
simulation system Network C (see section above). APEXII employs single and dual ported RAMs,
a ROM controller, two multipliers, two adders, a subtractor, a counter and numerous datapaths of
random logic. Layout generators for some of these modules were already available. For other parts
the generators had to be written.

Currently our work focuses on two areas: the first task is to verify that the layouts have the behavior
of the corresponding functional models in the Network C simulation; the second task is the placement
and routing of all the modules on the available silicon.

Verification of the layouts in the context of the architectural model for the chip has provided us with
useful feedback on NC. The scheme we ultimately adopted is to fork an RNL process from within
NC. Stimuli from surrounding blocks are applied through a UNIX pipe to the extracted circuit being
simulated within RNL. This scheme has been successful in isolating clocking problems as well as
labeling errors in the arithmetic blocks. Currently, layouts for all of the arithmetic blocks have been
verified.

The placement and routing methodology that we started with was to manually place all the generator-
created blocks and route them with MAGIC. A special utility for generating the netlist from the NC
simulation model was written. The routing task, however, was simply too ambitious for MAGIC to
handle all at once. With nearly 50 separate modules and over 1000 nets, MAGIC was never able
to complete the route. We are currently pursuing several alternatives simultaneously. Some of the
blocks are closely related and can be combined into a single datapath. The pitchmatching features
of the generators allow layouts for such blocks to be generated so that they align in a datapath
fashion. Another approach has been to hand route some of the more ubiquitous buses. Finally,
we are dividing the remaining netlist into several parts and routing each one individually. We are
confident that the combination of these efforts will result in a routed chip. Alternative solutions we
have proposed and discarded have included: moving to 1.25 micron technology (from 2.0 microns),
decreasing the amount of built-in testing, reducing the functionality, improving the MAGIC routing
code and more hand routing.

3.4 Drawing Netlist Programs

(Carl Ebeling, Zhanbing Wu)

One of our graduate students, Zhanbing Wu, worked last summer importing the drawing program
xdp (originally developed at CMU by Dario Giuse) into our environment as a means of drawing
schematics. We have defined conventions for writing netlist programs as hierarchical circuit draw-
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ings instead of text. These drawings allow the designer to represent arbitrary netlist programs
graphically. Arbitrary Lisp expressions can be used within the drawing to specify repetitive and
parameterized circuits; however, these expressions can themselves contain circuit drawings. When
complete, drawings are translated by a drawing analyzer into a netlist language that can be compiled
into SIM format files for simulation or for layout validation. We are now redefining the intermediate
netlist language so that it will support functional circuit specifications in the style of Network C or
CSIM (University of Colorado). We also plan to extend the netlist language with a better mechanism
for defining signals with structure.

3.5 Investigations Into Circuit Parallelism

(Larry Snyder, Mary Bailey)

We have been investigating the question: How much parallel "activity" is there on CMOS VLSI
Chips? Most researchers have assumed that large chips have many transistors firing simultaneously,
but because no one can measure the activity, no one can be sure. The first problem, then, is how to
determine the amount of switching on a chip. Simulation is the obvious answer, but the matter is
more complicated. Transistor switching is a continuous, analog activity, but parallelism, as the term
is generally used in computer science, seems to be more digital, based on the concept of a "step".
Also, to further complicate the use of simulation for determining on-chip parallelism, the detailed
SPICE simulations that engineers generally trust are computationaily infeasible for chips with more
than a few hundred devices.

We have developed a methodology, using Teran's linear-level simulator RNL, for empirically de-
termining the amount of parallelism on a CMOS VLSI chip. We also have a "calibration" study
showing to what extent RNL can serve as a surrogate for SPICE, and a study of the impact that the
simulation step size has on parallelism. We applied this methodology to six CMOS chips developed
at the UW. With the exception of a 16-bit shift register (which was included to exhibit substantial
switching), the number of transistors switching in a 0.1 nanosecond timestep was around 5. Con-
sidering that two of the chips contained over 20,000 transistors, this is a remarkably small amount
of parallelism. We also investigated how the choice of inputs and circuits size affect parallelism,
and found that previous efforts which extrapolate parallelism for large circuits by measuring the
parallelism in a small instance may be faulty.

If our results are correct, and CMOS VLSI chips are not very parallel, this has several implications.
First, we should try and discover why this is true and use this information to discover how to
increase the parallelism of circuits. We may want to use this information to investigate alternative
architectures for VLSI implementation. Second, if chips are not parallel, the conventionally accepted
technique of speeding up simulation through partitioning the circuit onto different processors may
be doomed.

3.6 Layouts from Functional Language Specifications

(Martine Schlag, Simon Kahan)

Our work on the use of a high level functional language for the specification of integrated circuits
continues and has recently focused on the problem of mapping the planar topology of a circuit to a
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layout. Our previous method relied on one-dimensional compaction, assembling the circuit based on
the specification by packing sequential constructs vertically and parallel constructs horizontally. The
result was an efficient mapping from a functional language specification of a circuit to an abstract
layout of a circuit or an actual layout if the technology and leaf cells were provided as well. Although
many circuits and their layouts can be described in this manner, this method restricts the flow of
signals to the vertical dimension; there was no provision for a signal to flow horizontally from one
primitive operator to another.

This restriction has been removed by first adapting the compactor to handle these signals and then
providing the compactor with the ability to compact in the other dimension by rotating the layout by
90 degrees. These modifications/enhancements of the current compactor were made by a graduate
student, Simon Kahan, during the summer of 1987. As a result of Simon's work, we are no longer
restricted to assembling sequential constructs vertically. It permits us to apply different packing
strategies to sub-circuits of the design. The challenge is now to exploit the information inherent in
the assembly history provided by the functional language specification to determine the compaction
strategy.

3.7 A Model for Architectural Comparisons

(Larry Snyder, Sam Ho)

Recently, architectures for sequential computers have become a topic of much discussion and contro-
versy. At the center of this storm is the Reduced Instruction Set Computer, or RISC, first described
at Berkeley in 1980. While the merits of the RISC architecture cannot be ignored, its opponents
have tried to do just that, while its proponents have expanded and frequently exaggerated them.
This state of affairs has persisted to this day.

The problem with these arguments was that their proponents were not speaking of the same things.
Each side quite naturally chose examples that most supported his own view. On top of that, the
RISC I chip from Berkeley contained an essentially unrelated piece of hardware, that of multiple
overlapping register sets. The early papers on RISC often combined the effects of the register set
and the instruction set with little regard for their relationship, which was tenuous, at best. When
the RISC I chip turned out to have an error that caused it to run extremely slowly, it provided no
vindication for the proponents of the CISC, since the problem had nothing to do with the complexity
of the instruction set.

In our analysis we start with a computer, defined by its functional units, such as ALU, shifter, and
registers, and its control, microcode or hardwired controls. We choose a calculation, such as a matrix
product or a text formatter, and decompose it into basic actions, which are arithmetic operations
and their relatives. To actually implement this calculation, we will need to generate some necessary
overhead actions, such as fetches and decodes. Finally, the functional units determine the cost in
time units called cycles of each action. The total cost of the calculation is the sum of the number of
cycles needed. The lower this number is, the faster the computer operates.

This model is an attempt to provide a common quantitative basis for a discussion of reduced vs
complex instruction sets and other architectural questions. Given a set of parameters and examples,
it provides a numerical result with which to compare that resulting from other such parameters.
This dependence on the example cannot be ignored, and reflects the truth that the performance of
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any system depends greatly on what it is being used for, as compared to what it was designed for.

3.8 NW LIS VLSI Tools RELEASE 3.1

(Warren Jessop)

Since early this year we have distributed Release 3.1 of our design toolset. Included in this release
are all of the Berkeley '86 tools, in particular MAGIC as well as NETLIST/PRESIM/RNL from
MIT and a design rule checker from Carnegie-Mellon. Also included is our home-grown procedural
layout package CFL. Many of the generators that we have written with CFL during the past several
years have also been included in 3.1.

Currently this release has been distributed to 134 sites, with 61 additional site licenses being pro-
cessed.

4 Recent Publications and Reports

1) Near-Optimal Speedup of Graphics Algorithms using Multiguage Parallel Computers, L. Snyder,
T. DeRose and C. Yang, Proceedings of the International Conference on Parallel Processing (to
appear) 1987.

2) Practical Algorithms for Image Component Labeling on SIMD Mesh Connected Computers, R.
Cypher, J. Sans and L. Snyder, Proceedings of the International Conference on Parallel Processing
(to appear) 1987.

3) The Hough Transform Has O(N) Complexity on SIMD N x N Mesh Array Architectures, R.
Cypher, J. Sans and L. Snyder, Technical Report 87-07-01, University of Washington, 1987.

4) The Plar ! Topology of Functional Programs, M. Schlag, The Third Functional Programming
Languages and Computer Architecture Conference, Portland, Oregon, September, 1987.

5) An Investigation of Multiguage Architectures, C. Yang, Ph. D. Thesis, Technical Report 87-10-05,
University of Washington, 1987.

6) Hercules: A Power Analyzer for MOS VLSI Circuits, A. Tyagi, Proceedings of the 1987 IEEE
International Conference on Computer-Aided Design, pp. 530-533, 1987.
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APPENDIX A

A NOTATION FOR DESCRIBING MULTIPLE VIEWS OF VLSI CIRCUITS

Jean-Loup Baer, Meei-Chiueh Liem, Larry McMurchie,
Rudolf Nottrott, Lawrence Snyder, Wayne Winder

NW Laboratory for Integrated Systems
Department of Computer Science

University of Washington
Seattle, WA 98195

ABSTRACT

A declarative hierarchical notation is introduced that allows the parametric representa-
tion of entire families of VLSI circuits. Layout, schematic diagrams and network structure
are all accommodated by the notation in a way that emphasizes common elements. The
notation is the basis of a structured environment for developing design generators as well as
capturing design expertise.
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1 Introduction

The application of full custom integrated circuit design to architectural problems requires a multitude
of CAD techniques. Not only does the designer have to specify and simulate networks of components,
but he also has to deal with the physical layout of those components. It seems apparent that the sheer
volume of circuitry required for even the simplest architectures mandates an approach that utilizes
previously captured circuit designs. One method of capturing expertise about entire families of circuit
design is through the use of design generators.

We define a design generator as a program that produces instances from a family of circuit designs.
The input is a problem-specific set of parameters; the most common output is the layout of the mask
layers. Several systems have been developed for the construction of layout generators (e.g.[Mayo 83],
[Bamji 85]).

Although the layout is the final means of specifying a circuit, it is simply too detailed and technology-
dependent to efficiently capture design expertise. Other more abstract views or representations are
necessary if one wishes to capture the design at a higher level and could likewise aid the user of the
generator as he constructs a complex design from a number of generated modules. A behavioral model
of the generated circuit, for example, could be used in a functional simulator. A network of devices could
be used in a switch-level or analog simulator. A schematic diagram could be used for documentation
purposes.

Our approach to developing a design generator environment is one that will support such multiple
representations. In order to efficiently capture design expertise, the correspondence between such rep-
resentations will be made evident.

1.1 Design Generator Model

Given the need to support multiple representations, what might an ideal environment for developing
generators look like? One such environment is shown in Figure 1. A frontend processes input parameters
and performs a variety of manipulations on the input.

The second element of the environment is a database or "model" which guides the generation process.
The model fills the gap between the frontend and the generator programs. One element of the model is
a list of the instance-specific input parameters provided by the frontend - the "catalog" file. The other
two parts of the model contain information about the entire family of circuit designs. The declarative
description specifies how the various representations of the circuit are to be assembled. The leaf cells
are the representation-specific primitives referenced in the declarative description. In the case of the
layout, the leaf cells are simply the mask geometries. In the case of the network representation, the leaf
cells may be behavioral models or subnetworks of devices.

The division of information about a circuit family between the declarative description and the leaf cells
is arbitrary. Most of the Information may reside In a few leaves, as in the case of a network description
of a PLA that references two behavioral models - one for the "and" and one for the "or" plane. Another
network description for the same family of PLAs may reference all transistors in the design.

Finally there are the circuit generators themselves, which take the information in the model and produce

the representations. These programs are independent of the particular circuit family, which is described
entirely in the declarative description and the leaf cells. The burden of circuit analysis and construction
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should be placed on the generator programs. The idea is to free the designer from as much detail as
possible and at the same time keep the notation simple.

Frontend Model Generators Output

notation

models

Figure 1: Circuit Design Generation

In looking at Figure 1, it is apparent that we have partitioned the generation process into three separate
parts. The advantage gained by doing this is that we can now use the most appropriate language
(procedural or declarative) for each part. The frontend is logically written in a procedural language
that is best for interfacing to the user, checking input parameters, and performing transformations
upon the input. Optimally, the notation describing how circuit families are constructed is declarative,
as the objects it describes are static. The generators are representation-specific and may be written in
specialized languages.

The key to the scheme we have proposed Is the development of a notation for the declarative description.
The notation must be expressive enough to describe naturally both geometric structure as well as
network Information. It must be parametric and sufficiently robust to describe entire fanilies of circuit
designs. It must be hierarchical as this Is the basic paradigm used in design, and it must be easy for
designers to write.

In the remainder of this section we look at languages that describe multiple representations of circuits
and outline our own goals. In Section 2, the salient features of the notation will be presented. In Section
3, the generator programs will be described in the context of an example.
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1.2 The Multiple Representation Problem

The declarative description is an example of a hardware description language (HDL). HDL's describe
to varying degrees functional behavior, network topology and geometrical structure.

Among numerous examples of HDL's is ADLIB [Hill 79], a Pascal-based language for specifying circuit
behavior. When combined with a topological description, the resulting assembly of behavioral models
may be simulated in the SABLE environment. The VHSIC Hardware Description Language (VHDL
8T) is a language for describing both network topology and circuit behavior. This language does not,
however, support semantics for the generation of layout.

There have been numerous efforts to develop languages that describe geometrical structure. The Regular
Structure Generator (RSG) !BAMJI 85] employs the concept of inherited interfaces to build hierarchical
specifications of circuit layouts. RSG forms the basis for a layout generator system. Escher [Clark 85]
is a layout specification system that allows recursively defined circuits.

There are a few HDL's that allow specification of all three elements - functional behavior, network
topology, and geometrical structure. In the functional programming language uFP [Sheeran 83] the
behavior specification implies a floorplan and routing. Because of the algebraic properties of uFP,
transformations can be made that retain identical functional behavior and allow floorplans and routing
to be modified. an important limitation of the uFP behavioral specification is that it doesn't allow
explicit representation of state.

Another effort to represent all three types of information is Zeus [Lieberherr 83]. Zeus is a strongly
typed procedural language that allows specification of both signal behavior as well as floorplanning
information.

1.3 Goals in the Development of the Notation

The notation for the declarative description has four major goals:

1. Network Topology and Geometric Structure
The notation must allow a hierarchical specification of both network topology and geometrical
structure in a way that emphasizes the correlation between the two representations. In order to
make this correlation more apparent we avoided explicit representation of behavioral information,
leaving it to be specified in leaf cells. This is in sharp contrast to such languages as Zeus.

2. Representation of Entire Circuit Families
As part of the environment in Figure 1, the notation must allow sufficient parametrization to
describe entire circuit families. At the minimum this requires loops and conditionals.

3. Simplicity and Naturalness
It Is Important that designers be able to capture circuit designs compactly and expressively. A
declarative notation is the obvious choice.

4. Technology independence
One of the major problems with many powerful layout languages is the technology dependence
that can creep in. Although elements of technology can be introduced into the notation (e.g. in a
network of MOS devices), a mechanism should be present for hiding such details in the leaf cells
In this way the circuit features common across technologies can be emphasized.
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2 Declarative Descriptions

2.1 Overview

The declarative description consists of two parts: (1) a declaration, which includes the name of the
circuit, the type of the representation, a list of parameters, the names of leaf cells, and a set of imported
functions; and (2) a collection of statements used to describe an entire circuit family. A description can
be regarded as a set of objects (leaf cells or abstract objects) and a set of relations among these objects.

The syntax of this high level description is designed to be close to that of the "C" programming language.
The Extended Backus Naur Formalism (EBNF) definition for the declarative description can be found
in [Liem 86].

2.2 Declaration

The syntax of the declaration is of the form:

NAME (circuit.nae>;

TYPE <reprouentation.._type>;

PARAMEMR <paraaeter, ls>;

LEAF CELLS (cell.list);

FUINC <funccion.lism;

<representation.ype) is either LAYOUT, SCHEMATIC, or NETWORK. (pexameter.li t> is a
list of inputs to the description. These values are obtained from the catalog file and serve to make the
description instance-specific. <cell.list> names all the leaf cells that are used in the description. The
leaf cell is the lowest level object in the hierarchy of a description. <function.list> is a list of the
(optional) functions that aid the circuit description. For example, 'binary' is a function which returns
the value of a specific bit in the binary representation of a number.

2.3 Objects

Leaf cells are the primitive objects on which the operators are applied and out of which abstract objects
are built. For example, a leaf cell can be the drawing of a NAND gate used for the schematic description
of a decoder or it can be the physical layout of a half-adder used for the layout description of a multiplier.
A leaf cell can be instantiated as many times as desired by specifying the number of repetitions. For
example, if "lcell" is a leaf cell, then "(I (lcell(n)))" is an object which is a collection of n copies
of "icell"; the relations among these copies will be defined by the operator "I".

Abstract objects are created to provide designers with the mechanism to describe a circuit representation
hierarchically so that most of the details at one level of the hierarchy are truly hidden from all higher
levels. An abstract object can be defined recursively. An alias of a leaf cell, an array of leaf cells or a
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composition of heterogeneous leaf cells are each abstract objects. Moreover, an array of abstract objects,
a group of heterogeneous abstract objects or a composition of these two are also abstract objects.

Abstract objects can be instantiated as many times as desired by providing the appropriate arguments.
Thus, "(--(rov ~iJ (=..4)))" is an object which is a collection of five objects whose relations are
defined by the operator g--I. Abstract objects are considered global. Thus, object names within a
description must be unique, i.e. "routil]" in one abstract object refers to the same object as "rov[i]"
in another, although, depending on the value of i, these may be quite different.

Given the features of leaf cells and abstract objects mentioned above, each description can use many
levels of abstraction. The highest level of the hierarchy is a single abstract object - the circuit that the
designer intends to describe. At the lowest level, the circuit is a collection of leaf cells. The description
of a representation of a circuit is recursive in nature; each abstract object is specified as a collection of
lower level objects. Since an abstract object may be defined after it is used, the description of an object
promotes "top-down" design or "stepwise refinement".

2.4 Operators

The operators which are used in our declarative descriptions can be arranged in the following groups:
(1) connection, (2) arithmetic, (3) relational, (4) logical, and (5) assignment ( "-" ).

The connection operators take objects as arguments and produce objects as results. The first four
operators ("--". "--' "I", and "I "") are used to combine objects into more complicated abstract
objects.

For NETWORK descriptions, these operators are all identical and cause creation of an object made up
of the argument objects connected according to the signal lists given with each object. For example,
"ACLn. ou1] a B[in, aid] I C[mid, out3]" means that "A" is made of "B" and "C", with the
first signal of "A" being the first signal of "B", the second signal of "A" being the second signal of "C",
and the second signal of "B" being connected to the first signal of "C".

PD~ AE :]-I
A--B A-- na

I '
AI B Aifn

Figure 2: Geonsic operwno for combining objects
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For LAYOUT and SCHEMATIC descriptions, these operators cause creation of an object made up of
the argument objects positioned geometrically. These positions are shown in Figure 2. The amount of
overlap for operators "--'" and "I 1" is controlled by attributes of the leaf cells.

The remaining connection operators, mirror and rotate, have no meaning in NETWORK descriptions.

Arithmetic, relational and logical operators are used as in conventional programming languages. The
arithmetic operators are '+', - 0', ./0 , I**' (exponentiation), and '2' (modulus). The
relational operators are "<", "<., "s", ">,", ">", and ":W" (not equal to). There are two
types of logical operators; the logical connectives include "U&" (and), and " II" (or). while the bit-
wise logical operators include "&" (bitwise and), "I" (bituise inclusive or), "" (bituis.
exclusive or), and "" (one's complement).

2.5 Control Constructs

Two fundamental control constructs are provided to enhance the expressiveness of a description: IF
(decision making) and looping. IF is used to specify conditions. Looping is expressed in either of two
forms. The first form provides the number of times for repetition; for example, "(--(X(m) ))" represents
m horizontally joined instances of X. The second form provides the upper bound, lower bound and step
of the loop index; for example, "(I (X[i](i*4..0,-2)))" represents 3 instances of X, with X[4]
situated at the bottom, X[21 in the middle, and X[O] on the top.
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3 Declarative Descriptions for a Decoder

This section provides examples of descriptions for three circuit representations of a family of precharged
decoders with n inputs and 2**n outputs. The descriptions given are for the network, the layout and
the schematic diagram. Two different descriptions are given for the network representation to illustrate
the manner in which the notation facilitates the design approach of step-wise refinement.

3.1 Network Description

A network description specifies the connectivity between a number of hierarchically structured objects.
At the lowest level, these objects are the leaf cells referred to by the description. Leaf cells for a network
description contain NC source code expressing the behavior of the object represented by the leaf ceil.
NC, or Network C, is a language similar to C with additional features to specify behavior, time delays
and connectivity [Beckett 86].

3.1.1 High level

The first network description of the decoder is a very simple, high-level description (Figure 3).

NAM decoder; (1)
TIM WMT1lK; (2)
PARASII a; /* anmber of inpute o/ (3)
LZAF CELS dec.o,; (4)
Zl1M z, clock; (5)
OUTPUT ye2*e ; (6)

{ C?)

decoder~z. (U)
(,(C3(i-2**n-1..O) )), (9)
clock 1 (10)

" C I ( dec.roverow. z. clock, yfro.]] (roum2oca-i..o) ); Ci)

(12)

Figure 3: High-level network description of a three-input decoder.
(The numbers in parentheses on the right side of a line are for reference purposes only.)

Since this first network description is at a very high level of abstraction, it uses only one leaf cell (line
4) and has two levels of hierarchy. In a sense, only the top of the hierarchy is described - it consists of
a set of n**2-1 interconnected dec.row objects (11), which are modeled as matching functions (see Fig.
4).

In addition to the items in the declarative part of the layout and the schematic descriptions, network
descriptions also have declarations of i/o signals ((5), (6)) which may be either single signals or vectors

9



The output signal y is declared implicitly as a vector. A vector is equivalent to a bus and may therefore
have one dimension only. The number of bus signals is given in angle brackets. An automatic expansion
of a vector takes place if the unindexed vector (as opposed to an indexed vector component) appears in
an object definition.

The purpose of an i/o declaration is to declare a signal as an input signal or an output signal. If a
signal appears in both an input declaration and an output declaration, the signal is a bi-directional i/o
signal.

Sets of signals may be specified using a looping construct with a comma as the loop operator (9). For
example, (,(y[i](i=2**n-1..0))), )) is equivalent to the signal list y[2**n-1], ..., y[0].

The object decoder has the signals x, y[2**n-1], ... ,y[O] and clock in its parameter list. Note that x
is the integer representation of a bus of binary signals. The parameter list of dec.row consists of the
variable 'row' and the signals x, clock, y[row]. The value of the variable 'row' depends on the particular
instance of dec.row.

The leaf cell dec.row, used in the high-level description of the decoder, is very similar to an ordinary
C function (Figure 4). NC functions, like this one model the behavior of some part of a circuit. The
variable type 'network' is a special NC data type through which nodes (signals) are referenced. (Ordinary
variables in the notation, such as 'row', take on specific values when an instance of an object is generated.
They are also passed to models as network variables.) Network variables are similar to formal parameters
in a C function definition. The model, however, is invoked only if a variable declared as 'network trigger'
changes.

dec.row()
(

network trigger row.nr. in, clk;
network select;

if C clk 1

SI ro.. -- in) {
select - 0;

) else (
select a I

Figure 4: The leaf cell dec.row, referenced in the high-level description of the decoder.

The 'network trigger' parameters of the model (row.nr, in, and clk) receive their values from the leaf

cell instance in the description (i.e. from row, x, clock). The model uses these values to compute the

new value for select, which is bound to the variable y[rowj.

3.1.2 Low level

The second network description of the decoder (Figure 5) is considerably more detailed than the first
one. (As a guide to understanding the description, see the schematic diagram for a decoder with n=3

inputs in Figure 9.) It uses three leaf cells and has four levels of hierarchy. It illustrates in more detail

some of the features of the notation for network descriptions discussed in the previous example.
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The description represents a network of nMOS and PMOS devices. The network structure has been
completely determined and most of the behavior specification is reduced to that of individual devices
(except for the leaf cell In'). A level of description intermediate between this and the high-level de-
scription discussed previously would be the definition of each row as a precharged nand function with
appropriate input bits if coil and x..barfcolj.

Note that, with the exception of the leaf cells and the parameter lists coming with the various objects.
the structure of the network description discussed here is very similar to the layout and schematic
descriptions discussed in the following sections.

NAM3 decoder; (I)
111! U3TME; (2)
PMA*ITU a; (3)
LEAF CILLI in. ads*. pt; (4)
ZEUM z(al. clock; (5)
OUTPU YE2o'aJ; (6)
VEMlU z..bar~n] nod. (nl; (7)
rC binamy; (s)
1 (9)

iscoderCC.zU JCU--1..O) ),(10)
(,(yE13Um2**zt-1..0) ).(11)
clock 1 (12)

* a~xow.Cz ber] (13)
1 (tdec-.row~row, z. r-.bar, clock, yCroull(r~v-2**a-1. .0))); (14)

in..ro.Cz. z..bar] - MIla~z~col]. z&bar~col]](col-n-1. .0))); (15)

dec..xowCrow. z. i-ber. clock. eel..linm] (16)
- atEtclock, GUD. oval-node] (17)
1 select~row, 0. zE0], z..barEo]. nodeEO]. eel-.line] (1S)
I MI(electtros. col, z~col]. z-.bar~col], node Ecol], node Ecol-13 1 (19)

(col-a-2. .1)) (20)
1 .silct~row, a-1, z~a-1], z..bar~n-1]. oval-n.ode. node~n-2]] (21)
1 pfet~clock, Vdd, sel-lia; (22)

select~row, col. in, in..bar. source. &rain] (23)
= afet E in, source, drain]. IF binazy(col'i, row) - 1 (24)
a infet in..bar, source,* drain]; (25)

Figure 5: Low-level network description of the decoder.

In addition to the implicit vector declarations in the i/o declarations, this description has explicit
VECTOR declarations for signals that are internal to the circuit. The expansion of these vectors works
just as the expansion of an i/o vector described previously.

The scope of signal names is local to an object definition. Signals within an object definition are
connected by name. For example, the sel-line of out-proc[clock, Vdd, seline] on line (22) is connected
to the seline of the first select on line (18).
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3.2 Layout Description

The layout representation in Figure 6 directs the construction of a decoder whose floorplan is shown
in Figure 7. The leaf cells of the description are Magic files [Ousterhout 851. The layout generator
produces a hierarchy of Magic ce!ls with the decoder being the root cell. These cells may be used like
any other Magic cells, i.e. they may be viewed or edited with Magic or may be incorporated into a
larger design.

In this example all of the cells tile neatly. The notation is, however, sufficiently flexible to acomodate
offset cells as well as overlapping ones. For this purpose, the alignment operators - - - and I are used
in combination with labels present in the leaf cells. With these operators, cells are aligned so that the
labels with the same name are superimposed.

NAM3 decoder;
TYPE LAYOUT;
PARAiUY n;
LEAF CELLS routal, in, route-r, sval, out. one. zero;
FMEC binary;

decoder a in.row
I ( I (dec.row[row] (row - 2e0z-I. .0)));

in-row a rout_..l
-- (--(inca)))
-- route.r;

d.c-row[row] a oval
-- (--(aelect[row.col] (colon..1)))
-- out;

select [row, col]
a one, IF binary(row.col) - I
- zero;

Figure 6: Layout description of the decoder.

12



LMLC.C- Ia..

Figure 7: Floor plan of the laypout of a three input decoder produced by the layout generator.
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3.3 Schematic Description

The schematic representation in Figure 8 directs the construction of a PostScript I [Adobe 85] file for a
schematic diagram of the decoder. Schematic output is always a picture and is intended for documenta-
tion purposes only. The schematic leaf cells are files containing PostScript source code which draw the
appropriate symbols or wires. These leaf cells are combined into a single file with appropriate "place-
ment" information. A facility exists for labelling portions of the diagram by string substitution when the
leaf cell is referenced. As an example, when "charge-out" is specified in "dec.row[O]", "clockiabel[row]"
evaluates to the string "clock", which is placed in the output PostScript file.

Figure 9 shows the schematic diagram of the decoder produced by the schematic generator from the
schematic of Fig. 8.

AIM decoder;

TYPE SCHEMATIC;
PARAMETER n;
LEAF CELLS in, charge.out. oval, one, zero, blank;
FUNC binary, strcat, int2str;
{

decoder n in-row
I (I(dec-row[row] (row-2en-..O)));

in-row - blank

-- (--(in[strcat("sel",rowlabel[col])] (col-n-1..0)))
-- blank;

dec-rowvrowJ
- eval [clockjlabel [row] I

-- (--(select[row, col] (coln. .1)))
-- charge.out[clock-label[row], strcat("out". rowylabel[row)];

select row,colJ
- one, IF binary(row.col) -- I
- zero;

/s labels */
row.label[row]- int2str(row). IF row < 10

- strcat(int2str(row/10). int2str(row10)), IF row >- 10 U* row < 100
a #feet;

clock.label(row] * "clock". IF row - 0

Figure 8: Schematic description of the decoder

'PostScript is a trademark of Adobe Systems Incorporated
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Figure P.- Schematic diagram of a 3 input decoder produced by the schematic generator from the
description of Fig. 8
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4 Conclusion and Future Work

The high and low level network examples combined with the layout illustrate the application of the
notation to top-down design of circuit families. We also note that the three low level descriptions
- network layout and schematic diagram - share a common hierarchy; the shaied objects provide a
natural link between the three circuit views.

We have applied the notation to a variety of decoders as well as a family of NxM Baugh-Wooley
multipliers. It has demonstrated utility both as a means of capturing information about circuits at a
variety of levels, and as an intermediate database in a design generator environment.

Several improvements could be made that would enhance its usefulness. One is to allow arrays of
parameters so that encoded circuits such as ROM's and PLA's could be expressed succinctly.

Another improvement is the use of signal names in the layout description. By including such information,
layout generation could be freed from the constraint of requiring interlocking leaf cells. By adding more
analysis of cell borders to the layout generator, cell extensions as well as routing could be employed to
interface cells according to the specified signal connections.
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APPENDIX B

Apex: Two VLSI Designs for Generating
Parametric Curves and Surfaces

Tony DeRose, Mary Bailey, Bill Barnard, Robert Cypher,
David Dobrikin. Carl Ebeling, Smaragda Konstantinidou,

Larry McMurchie, Haim Mizrahi, Bill Yost

Department of Computer Science
University of Washington

Seattle, WA 98195

Abstract

The interactive design of paramet'ic curves and surfaces places a tremendous computational burden on
general-purpose graphics workstations. We describe two architectures for a VLSI co-processor chip that
generates a large class of spline descriptions extremely quickly. This architecture is based on a triangular
computation that generates points on a curve in a data-flow fashion. The first chip, Apex I, maps this
data-flow structure directly into silicon. The second chip, Apex IL. performs the same computation in a
more flexible way that allows the generation of higher degree curves at the cost of lower performance. This
paper briefly reviews the theory underlying the triangle computation, focusing instead on the design and
implementation of the Apex chips.
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1 Introduction
It is now becoming quite common to design geometric objects with the aid of an interactive computer
modeling program. [In this type of design, the designer may begin with a mental image of the desired
shape, the goal being communication of that shape to the system. The system in turn stores an internal
representation that is robust enough to support the display, analysis, and possible manufacture of the object.

For "free-form" shapes such as the outline of a character in a typography system or the body of an
automobile, spline representations have become popular. The design of a curve typically begins by having the
designer specify a sequence of controlling points, collectively called a control polygon. It is the responsibility
of the system to transform the control points into a smoothly varying spline curve. Of course, there are many
ways the system could perform such a transformation, two possibilities of which are Bizier and Lagrange
curves (see, for instance, [Bartels et al '871 and [Boehm et al '841), as shown in Figure I. Surfaces can be
similarly defined by a network of control points, commonly called a control net.

*--------*Cont rol Polygon

Bezier Curve

Lagrange Curve

Figure 1: Bivzer and Lagrange Curves

Based primarily on the visual appearance of the curve, the designer may wish to move a control point.
thereby changing the shape of the curve. Ideally, the system would dynamically track the pointing device
and redraw the curve in real-time. i.e., at least thirty times per second. Even more desirable is the ability
to dynamically deform spline surfaces. Unfortunately, dynamic recomputation at these speeds is simply not
possible on conventional serial processors.

In this paper, we describe the design and implementation of two related VLSI architectures that are
capable of dynamically recomputing points on line segments. conic sections. and spline curves and surfaces
at real-time rates. Unlike previous methods of parametric spline generation such as forward differencing
(Lien et al '87) and recursive subdivision [Cheng et al '85] that can only generate a single type of spline
description, the architectures we present, called the Apex architectures, are unique in their ability to quickly
generate a large class of spline descriptions, a class containing virtually all splines in widespread use [DeRose
and Holman '87]. These two single-chip architectures, Apex I and Apex I, are related in that they each
perform a special form of geometric calculation called a triangular coniputation (see Section 2). The two
architectures differ in that Apex I uses a pipelined multiprocessor to achieve the highest possible performance
while Apex II uses a highly optimized serial processor to achieve greater generality in the types of curves it
can produce.teocv i

Although work on a prototype is still in progress. we envision using an Apex chip (either I or [I) as
a co-processor device in a graphics workstation. The host initializes the device by configuring it for the
curve or surface scheme of interest (Bizier. B-spline, Lagrange, etc.), then supplies the control points for the
particular curve or surface to be generated. A short time later points lying on the curve or surface begin
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to emerge from the Apex chip. Estimates based on the fabrication of an initial design indicate that a single
Apex chip will generate parametric surfaces at the rate of over one million points per second.

The presentation is structured as follows: In Section 2 we briefly motivate and introduce the triangle
architecture. In Section 3 we present the overall structure of Apex I and 11 and discuss the advantages and
disadvantages of each. The remaining sections present the details of the two chip designs.

2 Triangular Computations

The Apex architectures are based on the theory of certain discrete probability distributions known as u~rn
models. The application ofurn models to computer-aided geometric design is currently under development.
primarily by Goldman (Goldman '831 and Barry (Barry '87]. Rather than introducing the theory in the
context of urn models, in this section we briefly review an equivalent characterization based on ideas that
more closely embrace the issues involved in defining and implementing the Apex architectures. For a more
detailed discussion of the advantages of the Apex architectures over previously proposed methods for curve
and surface generation, see (Deftose and Holman '87].

Geometric design systems typically map the controlling points Vi into a parametric curve Q(t) according
to the formula

Q0<t <1

where the functions Bpt) are "weighting", "blending", of "basis" functions, usually polynomials or piecewise
polynomials, chosen to endow the curve with a given set of properties.' For instance, if the blending functions
are chosen to be the Bernstein polynomials

Bi (t) = t e.( -td-

then the curve

Q(t) Vi ~VB4(t), t E (0, 11
1=0

is a Bezier curve of degree d.
Such a curve can be displayed on a graphics screen by computing points on the curve for various values

of the parameter t, connecting adjacent points of evaluation with straight lines to obtain a piecewise linear
approximation to the true curve. Naturally, the larger the number of points of evaluation, the closer the
approximation will be to the true curve.

In the case of Bizier curves, an elegant method, due to de Casteljau [Boehm et al '84], for computing
the point on the curve corresponding to a fixed but arbitrary parameter value t can be stated as:

B( Vo V , t)
/0 Retun Q(9) using de CasVei(as 0_gotthm*/
for i -0 to d do

endfor
for j - I to d do

foro - 0 to d - j do

endfor
endfor
return VI0

For a good discuios of how blaeding functions influence the resulting curve, the reader is encouraged to consult (Bartels
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II
For our purposes, it is convenient to view de Castebau's algorithm as a data-flow graph, as shown in

Figure 2 for the case of a cubic curve. Circles denote addition nodes, and the labels on the arcs of the graph
indicate that data flowing along the arc should be multiplied by the value of the label before being input to
the incident addition node.

de Casteljau's algorithm for a cubic Bizier curve can therefore be viewed as a three-level labeled digraph
with a regular triangular interconnection, henceforth called a triangular computation. In general. compu-
tation of a point on a Bizier curve of degree d can be viewed as a triangular, computation with d levels.

tt

V0  VI V 2  V 3

Figure 2: Cubic Triangular Computation

Each node Vi in a triangular computation has two incident arcs, one from the left and one from the
right. For the de Casteljau algorithm, all left arcs are labeled with the function L(t) = I - t and all right arcs
are labeled with the function R(t) = t. The theory of urn models states that de Casteljau's algorithm can he

generalized to encompass other blending functions. and hence other curve schemes, by extending triangular

graphs to allow arbitrary functional labels on the arcs, subject to three restrictions. With the notation that

L (t) and Rf(t) denote the left and right labels incident upon the node V, the restrictions can be stated as:

1. All labels must be linear functions of the parameter t.

2. L (t) + R(t) = 1 for all i and .

3. Ro'(t) = t.

For a justification for these restrictions, see [DeRose and Holman '87]. Let us, for the moment, briefly

examine how general triangular computations are used to define parametric curves. Just as for de Casteljau's

algorithm, a point on a curve generated by a triangular computation with labels

L (t),1(t), j 1 d....d, = 0 ... , d-j,
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is defined to be the value produced at the apex of the triangle. A particular technique can be described by
a triangular computation if it is possible to appropriately choose the functional labels so as to obtain an
algorithm for computing points on such a curve. For instance, we have already seen that Bezier curves can
be obtained by setting all left labels to 1 - t, and all right labels to t, thereby resulting in de Casteljau's
algorithm Perhaps less obvious is the ability to generate arbitrary B-splines, cubic Catmull-Rom curves.
P6lya curves, and Lagrange curves. Figure 3 demonstrates the labels necessary to generate a uniform cubic
B-spline; a detailed assignment of labels for the other curve schemes can be found in [DeRose and Holman
'87].

1-t t

2-t t~l 2-t f t

V0  V, V 2  V 3

Figure 3: Uniform Cubic B.sphne Triangle

3 Architectural Issues

The Apex architectures are special purpose machines designed to perform triangular computations. Apex I
directly maps the triangular data flow graph into hardware so that a different processing element is associated
with each node in the graph. In contrast, Apex II is essentially a serial processor optimized to evaluate
triangular computations in a more flexible way to allow the generation of curves of higher degree.

The natural mapping of the structure of the computation directly into silicon in the Apex I design leads
to a very high performance pipelined system. Since the control points remain constant while the points along
the curve are generated, the host processor can easily supply input data fast enough to keep the pipeline
full. Thus the utilization of the chip circuitry approaches 100%.

This performance exacts a price in terms of generality. In Apex I. a triangular array is mapped into thl
plane which raises the difficult problem of partitioning a grid onto several chips. The bandwidth requirement
along the edges of partitions requires that the triangle be contained wholely within a single chip or divided
into partitions of limited size. Apex I embeds the entire triangle computation on one chip, limiting the degree
of the curves that can be generated to the level of integration poasible. Our current design uses 2 inicrou
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technology to generate curves of degree 3, which is sufficient to cover the vast majority of applications.
However, if higher degree curves are required, we project that more aggressive circuit design and 1.2 micron
technology would allow curves up to degree 5.

The precision with which Apex I can compute values is also limited by the area of the chip. The size
of the multiplier grows as b where b is the number of bits of the operands. Apex I limits the values of the
labels to the range (0, I] because the error incurred by the interpolation grows with the size of the label. This

restriction means that Apex I cannot generate some types of curves like Lagrange curves. However, most

common curves such as Bezier and uniform and non-uniform B-splines are still handled. One way to use

Apex I to generate a more general class of polynomial curves is to perform a change of basis. For example,
the control points of the Lagrange curve would be transformed to control points of a Bizier curve and then

generated as usual. Although this change of basis is also numerically unstable, it can be done on the host
where extended precision is available.

While Apex I takes advantage of the structure of the computation to attain very high performance, it
is clear that a more flexible way of performing the triangle computations would be advantageous. Apex 11
was designed with two goals - to handle larger degree curves and increase the accuracy of the calculations
to allow a larger family of curves.

In Apex II a single processor element is fed data from several RAMs, with a ROM controlling the

sequencing. Because there is only one processor element, the area required by Apex It is significantly
smaller than that for Apex I. This allows use of a larger word size, giving greater dynamic range and hence

accommodating a larger family of curve types. For this increase in flexibility, Apex II sacrifices speed: for

curves of degree d, throughput is reduced by a factor of 2/(d(d + 1)) compared to Apex 1.
The current design of Apex I uses 2 micron technology to generate curves up to degree 7. In addition it

employs a large enough word size to allow calculation of uniform Lagrange curves in addition to Bezier and
B-splines.

4 Apex I

Each processor element in the dataflow graph performs the same computation:

V. - L(t)V + R(t)V,

where V, and V, are the left and right inputs of the processor. Since L(t) = (1 - R(t)) this computation
can be simplified to:

V, - V, + (V, - VI)R(t) (1)

which requires only one multiplication and two additions.
Since R(t) is a linear function, it can be computed using forward differencing as long as the values of

t at which the curve is evaluated are uniformly spaced. Each processor element then comprises a forward

difference unit to generate the label R(t) and an interpolation unit as shown in Figure 4.

A further simplification is made for the processors at the base of the triangle. The inputs to these

processors are the control points of the curve which remain constant over all values of t. Equation I is then

a linear function of t and can itself be generated using forward differencing that interpolates the points V!

and V, where V, is the output of the processor element for t = 0 and V' is the output for t = 1. The

additional calculation required to compute V; and V,. is left to the host since it is done only once for each

curve. For the common case of Bezier curves, note that V' = V# and V" = V.

The points (z, V) on a 2-dimensional curve can be computed by the two independent parametric equations

X(t) and Y(t). It is convenient, however, to generate the coordinates in pairs so that points can be displayed

immediately. There are two ways to do this with Apex I depending on the speed of the host system. The

first is to use two Apex I chips, one computing X(t) and one Y(t), doubling the rate at which curves are

drawn. Alternatively, the Apex I chip can be programmed to generate up to three coordinate values per

point by multiplexing the coordinates through the pipeline. The processors at the base of the triangle, which
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Figure 4: One processor element.

we call vertex generators, serially generate up to three different coordinate values. The remaining processors
remain unchanged except that the same label is used for all coordinates of the same point.

4.1 Generating Surfaces

Triangular computations can also be used to generate surfaces. The control points comprising the control
net of the surface are blended together to form a set of curves, called parameter curves, each of which is
generated by a triangular computation. A triangular computation can then be used to blend together the
parameter curves to generate the surface [DeRose and Holman '87].

This process can be implemented by using one Apex chip in conjunction with host computation. The
host is used to serially generate one point on each of the parameter curves. These points are then fed to the
Apex chip that generates an entire curve lying on the surface. Relatively speaking, this does not place much
of a computational burden on the host. For instance, if we assume degree 3 curves, 100 points per parameter
curve, and 100 points for each curve lying on the surface, then the host must compute 400 points, while the
Apex chip computes 10,000 points.

While Apex I can generate the three coordinate values for curves in 3-space, some sort of post-processinLI
must be done to render the object in 2 dimensions. This includes perspective transformations and z-buft l
algorithms which many graphics workstations already provide.

4.2 Vertex and Label Generation

The processors at the base of the triangle and the units that generate the labels both use the forward
difference method and thus are very similar in design. The two units differ in that the vertex generator
produces up to three coordinate values for each point while the label generator produces only one label p,-r
point. The design of the vertex generator is shown in Figure 5.

Forward diffierencing is performed by initializing the pipeline registers with the initial value of each
coordinate. The appropriate delta values are then accumulated using a 32-bit pipelined adder. The high
order 16 bits form the vertex values sent to the processors at the next level in the triangle. The low order 113
bits are used to maintain sufficient accuracy and are truncated. The coordinate values are held in a circular
pipeline and the delta value of the appropriate coordinate is added at each cycle. The length of this pipeline
is set according to the number of coordinates being generated. The adder itself is pipelined in two stages
with the low-order 16 bits of a value being incremented on one cycle followed by the higlh-order 16 bits on
the next.

0
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Figure 5: The vertez genervtor.

The label generator is identical to the vertex generator except that there is only one pipeline register and
the increment is performed only once per point.

4.3 The Interpolation Unit

Each processor element performs the interpolation of Equation I using the label R(t) produced by the label
generator. The initial subtraction is a simple modification of the adder while the final addition is folded into
the multiplier by treating V1 as an additional partial product. The multiplier is based on the modified Booth
multiplier using the sign generate method described in (Annaratone '86]. The multiplier multiplies the 16-bit
signed value V, - V, by the 15-bit unsigned fraction R(t) producing a 16-bit signed value as the result.
Since only the 16 most significant bits of the multiplier result are kept, the low order 16 bits of the partial
products are discarded within the multiplier array. However, since these discarded bits can generate a carry
into the high order result, an additional carry resolve unit has been added to each row which computes the
carry generated by the discarded bits. The final carry is then used as the carry into the final 16-bit adder
used to resolve the carries in the high order results from the multiplier array. This 16-bit adder replaces a
32-bit adder without any loss of accuracy.

The 16-bit adder used in the multiplier is a precharged Manchester carry adder with carry bypass. This
sae adder is used elsewhere to perform forward differencing and the initial subtraction in the interpolation
unit. The time to perform one 16-bit addition was chosen as a convenient cycle time for the chip and thus
the multiplier is pipelined such that the time through each stage conforms to this basic cycle time. The
amount of pipelining and the resulting throughput can be increased at the expense of an increased number
of pipeline registers.

4.4 Pipeline control and I/O
Each value Lowing through the pipeline has associated with it a control word that indicates the processing
that should be performed on that value. This control word controls the multiplexing of the appropriate
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coordinates by the vertex generators and controls the generation of the label values at the correct times. It
is also used to mark the beginning of a new curve which causes the vertex and label generators to begin
using new data values. The data registers specifying the initial and delta values for the forward differencing
are double-buffered so that the 1/O section can load the data for a new curve while the previous curve is
being generated. In this way, breaks in the pipeline are avoided.

The pipeline control is generated by a finite state machine that interacts with the I/O unit via a control
register. Upon initialization, the control unit waits for the I/O unit to set the registers in the vertex and
label generators with the definition of a curve. The I/O unit then sets a 'Ready' bit in the control register
which causes the control unit to generate the appropriate control words for the pipeline. The number of
coordinates generated per point is indicated by a field in the control word while the number of points to be
generated on the curve is specified by a count register.

The chip has been designed so that a 16-bit value is generated each clock cycle. Since this will be too
fast for many systems, a WAIT signal can be asserted to stall the pipeline until a new value can be handled.

4.5 Performance
The multiplier part of the processor element was designed and fabricated through MOSIS. A yield of 15 of 18
chips was achieved with a clock rate of 5MHz. Based on this performance, we expect the final Apex I chip to
generate 2-dimensional curves at the rate of 2 million points/sec. and surfaces at 1.5 million points/sec. A
final version of Apex I will be sent for fabrication in early Fall '87 with an initial prototype system comprising
a Sun 3 graphics workstation with an Apex I co-processor operational in Spring '88.

5 Apex II
In contrast to the parallel implementation of Apex 1, Apex 11 uses a single high performance processing
element to perform the triangle computatious in the order shown in Figure 6. The advantage of sequencing
the computation in this order is that the control can be defined recursively. That is, the computation
sequence for a degree d - 1 curve is a subsequence of that for a degree d curve.

6

3 5

1 2 4

Figure 6: Sequencing the triangle computation in .4per 11.

As nodes in the triangle are evaluated in sequence. many of the calculations made by the processor
element require the output of the previous node as an input (e.g. node 6 requires the output from node
5). However, the processor element is pipelined with P stages and thus the triangle cannot be evaluated in
sequene without some null cycles. This problem was solved by introducing a loop over P values of t within
the overall loop through nodes in the triangle. This means that after the evaluation is done for the Pth
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value of t, the result for the lst value of t will have progressed through the pipeline and be available as an
input for the next node in the sequence.

A temporary storage RAM is used to save node outputs that are not needed until later in the processing
sequence. For example, the output of node 3 is used by node 6 and must be stored while nodes 4 and 5 are
evaluated. The organization of this memory can be considered to be P pages each with d - I words, where
d is the maximum degree that the chip can handle. Each page corresponds to a different value of t. To
generate the write address, a pipeline counter cycles through the pages while another counter cycles through
the d - 1 words on a page. The read address is a more complicated function determined by the output of a
ROM and the pipeline counter.

Figure 7 shows how this data is handled. Pipecount corresponds to the current t value and gives the
page address; pestate addresses the specific node under evaluation in the triangle; and nextvl and nextvr
are the read word addresses out of the ROM.

i p .peCUCT. '

efto (Page addr) (Page Adz)uat tat

d-1 e, ,.

R(t. (P stages)

Figure 7: Papelansng the dta for the PEN

5.1 Label Generation

Label inputs to the nodes are of the form R(t) = nit + b. t e [0, I] where the slope m and intercept b are
coefficients that must be provided for each node. The function mt + b is computed directly in the Apex [I
chip by a processor element that is a subset of the triangle processor. The coefficients m and & are stored
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in a RAM and are loaded in the initialization phase of the circuit operation. The address to the RAM is
simply the pestate and changes only as the node under evaluation is updated.

The t generation circuitry cycles through P values of t for each node in the triangle. Once the top of the
triangle is reached a new set of t values replaces the old. The value of t is incremented by a user definable
dt value to generate each succeeding value. When the value of t is increased to a value greater than one a
signal is generated that indicates that evaluation of the current set of control points is complete.

5.2 Loading and Testing

There are four control inputs that control all functions of the chip:

* The start signal resets all registers and must be asserted before any data is run.

" The run command is asserted to cause the chip to carry out the triangle calculations.

* The load signal activates the loading of data onto the chip. All storage locations for data inputs to the
chip are mapped onto the address space of an 8 bit load address bus. When the load signal is asserted
data on a bidirectional load/dump bus is stored into the location specified by the load address bus.
The control points, label coefficients, degree of the triangle and dt must be loaded before the triangle
can function.

" The dump signal is for testing only and enables the storage location specified by the load address bus
to be written back onto the load/dump bus. The dump function is nondestructive in that the chip
operation can be halted, a dump performed and the chip operation then continued without affecting
the output of the chip.

5.3 Implementation

An Apex II chip is currently being designed with the following parameters: The maximum degree, d, is 7,
the number of bits, b, is 16 and the number of pipeline stages, P, is 4. The chip is based on a 7.9 x 9.2 mm.
die using MOSIS 2-micron scalable CMOS design rules. Each module and the padframe was produced with
the procedural layout system CFL [NW LIS, '87] and the graphical layout editor Magic (Scott et al, '86].

The processor element design is identical to that used in Apex I as described in Section 4.3. The choice
of 16 bit accuracy in the processor element is sufficient for Bezier and uniform B-spline curves. An extension
to 20 bits would allow generation of 7th degree uniform Lagrange curves. Because the processor element
design, as well as the storage arrays, are generated procedurally as a function of word size. this extension is
straightforward.

Several memory modules are used to store control points, label coefficienits and temporary values. The
control points and the label coefficients are stored in static single-port RAMs organized as 8 words by 16
bits and 28 words by 32 bits respectively. Temporary values are stored in a static dual-port RAM organized
as 24 words by 16 bits; a dual-port is required in order to fetch the next value needed as an input to the
processor element and simultaneously store the current output of the processor element. Control signals are
generated by a control RON! which is a 28 word by 14 bit two transistor RONI. These memory modules have
been designed to operate with 50ns cycle times.

Several datapath modules are required for processing temporary values as well as generating t values.
These bit-sliced modules consist of registers, muxes, tri-states, and latches; assembly and routing of these
elements is handled semi-automatically with CFL.

Based on the performance of the fabricated multiplier unit described in Section 4.5, we expect to generate
degree 3 curves at a rate of I million points/sec. This figure assumes the use of two chips, one to compute X
values and the other Y values. The design of Apex II will be completed in early Fall '87 and then fabricated
through MOSIS.
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6 Conclusion
Apex I and 11 solve the same problem in two different ways to achieve different goals. In this section we
discuss how the designs differ and what the tradeoffs are. The parameters of the design are performance.
the maximum degree of the curve that can be generated, and the precision with which values are computed.
This last factor is important because some types of curves like Lagrange curves (for which the label values
exceed 1) can only be generated if the computational error can be controlled.

The two different chip architectures use silicon area for two different goals. The Apex I design uses it
to obtain the greatest possible parallelism by integrating an entire triangle but is restricted to curves of
relatively small degree. Since Apex 11 has just one processor element it can use the remaining area in a
number of ways. The most important is to increase the degree d of the curves generated. This only increases
the amount of temporary storage by a factor of d in contrast to Apex I whose total area depends on d2 .
Another way to use the area is to increase the pipelining and thus the throughput of the processor element.
This again increases the amount of temporary storage by a factor of P. Finally, the area can be used to
increase the precision of the computations thus allowing a larger class of curves to be generated. Thus Apex 11
achieves a much greater degree of flexibility and generality compared to the relatively inflexible architecture
of Apex I. However, where the curves are of modest degree and the highest performance is required, Apex I
is the design of choice.

The two chip architectures presented in this paper cover a wide range of possible implementations with
very high performance and low flexibility at one end and high flexibility with somewhat lower performance
at the other. With the addition of a single co-processor Apex chip, a graphics workstation can incorporate
a very high performance and general curve drawing capability.
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